Name:	
-------	--

Ions! SNC2D

Atoms are most stable (and therefore happy) when they have ______.

Atoms that have fewer electrons in their outer shells than it would take to fill that shell will preferentially

electrons.

E.g.	Sodium has	*******************	It would need to gain	to fill that shell.
F.2.	Sogium nas	valence electron.	it would need to gain	to iii that sheil
6-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	;		

So it loses instead. It now has fewer shells, but the last one is full.

Because sodium has lost a negatively-charged electron, it now has a _____ charge.

Positively-charged ions are called ______.

The elements that form positively-charged ions are ______.

The charge on an ion is said to be its valence charge, or simply valence.

E.g. The valence of sodium is _____ or ____.

Let's look at some more metal ions. . . .

Given the following Bohr diagrams, what will the valence of the ions be?

Note that sodium and lithium, both in the column, both have a valence of
And magnesium and calcium, both in the column, have a valence of
Since elements in the same column or family on the periodic table have the same number of
, they will typically form ions in the same way and have the same valence charge.
Some metals can form ions in two different ways and have two possible valences; these metals are said to
pe
E.g. the valence of lead is or
(Check the periodic table in your textbook or, during a test, a chemistry "cheat sheet.")
Γο indicate which ion we are dealing with, we write the valence charge in Roman numerals after the name of the metal.
E.g. lead () or lead ()

electrons.

chlorine atom, Cl 2,8,7

chloride ion, Cl [2,8,8]

E.g.	Chlorine has	valence electrons. It would need to gain	to fill that shell.

So it just gains 1 (that was given up by a metal).

Because chlorine has gained a negatively-charged electron, it now has a _____ charge.

Negatively-charged ions are called .

The elements that form negatively-charged ions are ______.

Non-metals, when they form ions, change their names to:

the first syllable + the suffix "ide"

chlorine → _____

fluorine -> _____

bromine → ____

oxygen → ____

sulphur → ____

nitrogen → _____

phosphorus → _____

Given the following Bohr diagram, what will the valence of the ion be?

A polyatomic ion is a group of atoms bonded together (by shared electrons) that acts as a single ion.

E.g. Nitrate NO₃

Nick and His Polyatomic Ions

Nick	the	Camel	had a	Clam	for	Suppe	r in	Phoenix	K.
------	-----	-------	-------	------	-----	-------	------	----------------	----

First consonants =			
# of vowels =			
# of consonants =			
One extra oxygen "per-ate"	Normal	One less oxygen "ite"	Two less oxygens "hypo-ite"
	Nick		
	Camel		
	Clam		
	Supper		
	Phoenix		
You should also be far	niliar with:		
HCO ₃ -			
OH-			
NH4 ⁺			